Home
Class 12
MATHS
The value of lim(x->a)log(x-a)/(log(e^x-...

The value of `lim_(x->a)log(x-a)/(log(e^x-e^a)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x->a)("log"(x-a))/(log(e^x-e^a))

The value of lim_(x rarr a)(log(x-a))/(log(e^(x)-e^(a))) is

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

Evaluate: lim_(x rarr a)(log(x-a))/(log(e^(x)-e^(a)))

Evaluate: ("lim")_(xveca)("log"(x-a))/(log(e^x-e^a))

Evaluate the following limit: (lim)_(x->a)(log(x-a))/("log"(e^x-e^a))

The value of lim_(x->oo)((log)_e((log)_e x)/(e^(sqrt(x)))i s___________