Home
Class 12
MATHS
The value of sum(r=0)^nsum(s=0)^nsum0^ns...

The value of `sum_(r=0)^nsum_(s=0)^nsum_0^nsum_(t=0)^nsum_(u=0)^n(1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^nsum_(s=0)^nsum_(t=0)^nsum_(u=0)^n(1) is

The value of sum_(r=0)^(n)sum_(p=0)^(r)n_(r)*rC_(p)

The value of sum_(r=0)^(n)sum_(s=1)^(n)*^(n)C_(5)*^(s)C_(r) is

S=sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1

S=sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(n=0)^(1)sum_(i=1r<=pi)^( n)nC_(r)sC_(r) is

If sum_(r=1)^nt_r=sum_(k=1)^nsum_(j=1)^ksum_(i=1)^j2 , then sum_(r=1)^n1/t_r=

The value of lim_(n->oo)sum_(r=1)^(n)1/(5^n).^n C_r(sum_(t=0)^(r-1).^r C_t .3^t) is equal to

sum_(r=1)^nr^2-sum_(m=1)^nsum_(r=1)^mr is equal to