Home
Class 12
MATHS
If intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2))...

If `intf(x)sinxcosxdx=(1)/(2(b^(2)-a^(2)))log{f(x)}+C` then f(x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If intf (x)sinx cosx dx=(1)/(2(a^(2)-b^(2)))log|f(x)|+C ,then f (x)=

If f(x)sin x cos xdx=(1)/(2(b^(2)-a^(2)))ln f(x)+c, then f(x) is equal to (1)/(a^(2)sin^(2)x+b^(2)cos^(2)x)(b)(1)/(a^(2)sin^(2)x-b^(2)cos^(2)x+b^(2)cos^(2)x+b^(2)cos^(2)x)(d)(1)/(a^(2)cos^(2)x-b^(2)cos^(2)x)

If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

If f(x)sinx.cosxdx=(1)/(2(b^(2)-a^(2)))logf(x)+c , where c is the constant of integration, then f(x)=

If intf(x)sinxcosxdx=(1)/(2(b^2-a^2))logf(x)+c , where c is the constant of integration, then f(x)=

if int f (x ) sin x cos x dx = (1)/(2(b^(2) -a^(2)) log f(x ) + c where C is a constant of intergration then f(x) =

int_( then )^( If )f(x)sin x cos xdx=(1)/(2(b^(2)-a^(2)))log f(x)+C