Home
Class 11
MATHS
If Aa n dB are acute positive angles sa...

If `Aa n dB` are acute positive angles satisfying the equations `3sin^2A+2sin^2B=1` and `3sin2A-2sin2B=0,` then `A+2B` is equal to (a)`pi` (b) `pi/2` (c) `pi/4` (d) `pi/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are acute positive angles satisfying the equations 3sin^(2)A+2sin^(2)B=1 and 3sin2A-2sin 2B=0 , then A+2B is equal to

If A and B are acute positive angles satisfying the equations 3 sin^(2)A+2sin^(2) B=1 and 3 sin2A-2 sin 2B=0 , then A+2B is equal to

If A, B are acute positive angles satisfying the equations 3sin^(2)A+2sin^(2)B=1 and 3sin2A-2sin2B=0 , then find A+2B .

If AandB are acute positive angles satisfying the equations 3sin^(2)A+2sin^(2)B=1 and 3sin2A-2sin2B=0, then A+2B is equal to (a) pi (b) (pi)/(2) (c) (pi)/(4) (d) (pi)/(6)

If Aa n dB are acute positive angles satisfying the equations 3sin^2A+2sin^2B=1a n d3sin2A-2sin2B=0,t h e nA+2B is equal to pi (b) pi/2 (c) pi/4 (d) pi/6

If Aa n dB are acute positive angles satisfying the equations 3sin^2A+2sin^2B=1a n d3sin2A-2sin2B=0,t h e nA+2B is equal to pi (b) pi/2 (c) pi/4 (d) pi/6

If A and B are acute positive angles satisfying the equations 3 "sin"^(2) A + 2"sin"^(2)B =1 " and " 3"sin"2A-2 "sin" 2B = 0, "then " A +2B =

A and B are positive acute angles satisfying the equations 3cos^(2)A+2cos^(2)B=4 and (3sinA)/(sinB)=(2cosB)/(cosA) , then A+2B is equal to (a) pi/4 (b) pi/3 (c) pi/6 (d) pi/2