Home
Class 11
MATHS
lim(x->0) (e^x-log(ex+e))/x...

`lim_(x->0) (e^x-log(ex+e))/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0)(e^(x)-log(e+ex))/(x) is -

lim_(x rarr0)(e^(x)-log(ex+e))/(x)

(7) Find the value of lim_(x->0) ((e^(x)-1) log(1+x))/(x^(2))

lim_(x rarr0)(e^(x)-log_(e)(ex+e))/(x)

lim_(x->0)(e^log(2^x-1)^x-(2^x-1)^(x)*sinx))/(e^(xlogx)) is equal to

Evaluate (lim)_(x->0)((log)_e x)/(x-1)

lim_(x rarr0)(e^(x)+log{(1-x)/(e)})/(tan x-x) equals

lim_(x->oo)[x-log_e((e^x+e^(-x))/2)]= a) (log)_e4 b. 0 c. oo d. (log)_e2

lim_(x rarr0)(log_(e)(1+x))/(x)

lim_(x rarr 0) (log(1+x))/(3^x-1)=1/(log_(e)(3))