Home
Class 12
MATHS
(vecaxxvecb)^2+(veca.vecb)^2=|veca|^2 |v...

`(vecaxxvecb)^2+(veca.vecb)^2=|veca|^2 |vecb|^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb are any two vectors, then prove that |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2)

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

For any two vectors veca and vecb prove that |vecaxxvecb|^(2)+(veca*vecb)^(2)=|veca|^(2)|vecb|^(2)

Prove that : (vecaxxvecb)^2=|\veca|^2.|\vecb|^2-(veca.vecb)^2 .

If veca.vecb are say two vectors, then prove that abs(vecaxxvecb)^(2)+(veca.vecb)^(2)=abs(veca)^(2)abs(vecb)^(2)

for any two vectors veca and vecb , prove that abs(vecaxxvecb)^(2)+(veca.vecb)^(2)=abs(veca)^(2)abs(vecb)^(2) .

if (vecaxxvecb)^(2)+ (veca.vecb)^(2) = 36 and |veca|=3 the find the value of |vecb|

If (vecaxxvecb)^2+(veca*vecb)^2=144 and |veca|=4 , then |vecb|=

If veca and vecb be any two mutually perpendiculr vectors and vecalpha be any vector then |vecaxxvecb|^2 ((veca.vecalpha)veca)/(|veca|^2)+|vecaxxvecb|^2 ((vecb.vecalpha)vecb)/(|vecb|^2)-|vecaxxvecb|^2vecalpha= (A) |(veca.vecb)vecalpha|(vecaxxvecb) (B) [veca vecb vecalpha](vecbxxveca) (C) [veca vecb vecalpha](vecaxxvecb) (D) none of these