Home
Class 12
MATHS
((-1+isqrt(3))/2)^6+((-1-isqrt(3))/2)^6+...

`((-1+isqrt(3))/2)^6+((-1-isqrt(3))/2)^6+((-1+isqrt(3))/2)^5+((-1-isqrt(3))/2)^6` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

((-1+isqrt(3))/2)^6+((-1-isqrt(3))/2)^6+((-1+isqrt(3))/2)^5+((-1-isqrt(3))/2)^5 is equal to

((-1+isqrt3)/(2))^(6)+((-1-isqrt3)/(2))^(6)

(1+isqrt(3))^(12)-(1-isqrt(3))^(12)=

Find the value of: ((1 + isqrt(3)) / (1 - isqrt(3)))^6 + ((1 - isqrt(3)) / (1 + isqrt(3)))^6 using De Moivre's Theorem

((-1+isqrt3)/(2))^(3n)+((-1-isqrt3)/(2))^(3n)

If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-isqrt(3))/(2i)]] , i = sqrt(-1) and f (x) = x^(2) + 2, then f(A) equals to

If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-isqrt(3))/(2i)]] , i = sqrt(-1) and f (x) = x^(2) + 2, then f(A) equals to

arg((1-isqrt(3))/(1+isqrt(3)))=.....

If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-isqrt(3))/(2i)]] , I = sqrt(-1) and f (x) = x^(2) + 2, then f(A) equals to

Argument of (1-isqrt(3))/(1+isqrt(3))