Home
Class 10
MATHS
If asintheta+bcostheta=c then prove that...

If `asintheta+bcostheta=c` then prove that `acostheta-bsintheta=sqrt(a^2+b^2-c^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If acostheta+bsintheta=c , then prove that: asintheta-bcostheta=+-sqrt(a^(2)+b^(2)-c^(2))

If acostheta-bsintheta=c , then prove that: asintheta+bcostheta=+-sqrt(a^(2)+b^(2)-c^(2))

If acostheta-bsintheta=c , then prove that: asintheta+bcostheta=+-sqrt(a^(2)+b^(2)-c^(2))

If asintheta+bcostheta=c , then acostheta-b sintheta is equal to

If a costheta-b sintheta=c ,show that a sintheta+bcostheta=+-sqrt(a^2+b^2-c^2)

If asintheta+bcostheta=c , find acostheta-bsintheta=?

If acostheta-bsintheta=c , then asintheta+bcostheta= (a) +-sqrt(a^2+b^2+c^2) (b) +-sqrt(a^2+b^2-c^2) (c) +-sqrt(c^2-a^2-b^2) (d) None of these

Evaluate (a+bcostheta)^2+(bsintheta)^2

If alpha and beta are roots of the equation acostheta+bsintheta=c then prove that, cosalpha+cosbeta=(2ac)/(a^(2)+b^(2))andcosalpha.cosbeta=(c^(2)-b^(2))/(a^(2)+b^(2))

If x=(acostheta+bcostheta)/(a+b), then