Home
Class 12
MATHS
If y=sqrt(x+1)+sqrt(x-1) , prove that sq...

If `y=sqrt(x+1)+sqrt(x-1)` , prove that `sqrt(x^2-1)(dy)/(dx)=1/2y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt(x+1)+sqrt(x-1), prove that sqrt(x^(2)-1)(dy)/(dx)=(1)/(2)y

If y=sqrt(x+1)+sqrt(x-1)," then: "2sqrt(x^(2)-1)*(dy)/(dx)=

If y=sqrt(1+sqrt(1+x^(4))), prove that y(y^(2)-1)(dy)/(dx)=x^(3)

If y=log[x+sqrt((1+x^(2)))], prove that sqrt((1+x^(2)))(dy)/(dx)=1

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y = sqrt(1+sqrt(1+x^(4))) , prove that y * (y^(2) - 1)(dy)/(dx) = x^(3) .

If y = sqrt(1+sqrt(1+x^4)) , prove that y(y^2-1)dy/dx = x^3

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y= sqrt ( x) + (1)/( sqrtx ) , prove that 2x (dy)/( dx ) + y=2 sqrt (x ) .