Home
Class 11
MATHS
Find lim {x->pi/4} (1-tanx)/(1-sqrt(2)si...

Find `lim {x->pi/4} (1-tanx)/(1-sqrt(2)sinx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->pi/4)(1-t a n x)/(1-sqrt(2)sinx)

Evaluate the following limits: lim_(xrarr(pi)/(4))(1-tanx)/(1-sqrt2sinx)

Find the value of k, if the function f given by : {:(f(x)=(1-tanx)/(1-sqrt2sinx)",", "for" x nepi/4),(=k/2",","for"x=pi/4):} is continous at x =pi/4*

Putting z=x-(pi)/(4)" show that "underset(xrarr(pi)/(4))"lim"(1-tanx)/(1-sqrt(2)sinx)=2.

underset( x rarr (pi)/(4))("Lim")(1-tanx)/( 1- sqrt(2) sin x)

lim_(x->(pi/2)) (1-sinx)tanx =

lim_(x->(pi/2)) (1-sinx)tanx =

Evaluate the following: lim_(xto pi/4) sin((1-tanx)/(1+tanx))/(pi/4-x)

Evaluate : "lim"_(x rarr pi//4) (1- tanx)/(cos 2x)