Home
Class 12
MATHS
(1)/(x(log x)^(m)),x>0,m!=1...

(1)/(x(log x)^(m)),x>0,m!=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate the functions (1)/(x(log x)^(m)),x>0

int(1)/(x(log x)^(m))dx

I=int(1)/(x(log x)^(m))dx

int (1)/(x(log x)^m) dx

if I_(m,n)=int(x^(m))/((log x)^(n))dx, then (m+1)I_(m,n)-nI_(m,n+1) is

If I_(m)=int_(1)^(x) (log x)^(m)dx satisfies the relation I_m = k-lI_(m-1) then,

Given I_(m)=int_(1)^(e)(log x)^(m)dx, then prove that (I_(m))/(1-m)+mI_(m-2)=e

If I_(m,n)=int (x^(m))/((log x)^(n))dx then (m+1)I_(m,n)-n.I_(m,n+1)=

If I_(m)=int_(1)^(e )(log_(e)x)^(m)dx , then the value of (I_(m)+mI_(m-1)) is -