Home
Class 12
MATHS
The integral int(2x^(12)+5x^9)/((x^5+x^3...

The integral `int(2x^(12)+5x^9)/((x^5+x^3+1)^3)dx` is equal to: (1) `(-x^5)/((x^5+x^3+1)^2)+C` (2) `(x^(10))/(2(x^5+x^3+1)^2)+C` (3) `(x^5)/(2(x^5+x^3+1)^2)+C` (4) `(-x^(10))/(2(x^5+x^3+1)^2)+C` where C is an arbitrary constant.

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to: (1)(-x^(5))/((x^(5)+x^(3)+1)^(2))+C(2)(x^(5)x^(3))/(2(x^(5)+x^(3)+1)^(2))+C(3)(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C(4)(-x^(3)+x^(3))/(2(x^(5)+x^(3)+1)^(2))+C where C is an arbitrary constant.

The integral int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx is equal to- (A) x^10 / (2(x^5 + x^3 +1)^2) (B) x^5/ (2(x^5 + x^3 +1)^2) (C) -x^10 / (2(x^5 + x^3 +1)^2) (D) - x^5 / (2(x^5 + x^3 +1)^2)

The integral int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx is equal to- (A) x^10 / (2(x^5 + x^3 +1)^2) (B) x^5/ (2(x^5 + x^3 +1)^2) (C) -x^10 / (2(x^5 + x^3 +1)^2) (D) - x^5 / (2(x^5 + x^3 +1)^2)

The integral int(2x^(12)+5x^(9))/([x^(5)+x^(3)+1]^(3))*dx is equal to- (A) (x^(10))/(2(x^(5)+x^(3)+1)^(2))(B)(x^(5))/(2(x^(5)+x^(3)+1)^(2))(C)-(x^(10))/(2(x^(5)+x^(3)+1)^(2))(D)-(x^(5))/(2(x^(5)+x^(3)+1)^(2))

int((2x^(12)+5x^(9))dx)/((x^(5)+x^(3)+1)^(3))

The integral int(2x^12+5x^9)/((x^5+x^3+1)^3)dx is equal to: where C is an arbitrary constant.

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx=(x^(p))/(q(x^(5)+x^(3)+1)^(r))+c , then p-q-r =