Home
Class 12
MATHS
If alpha and beta be two different roots...

If `alpha and beta` be two different roots of equation, `a cos theta + b sin theta = c`, prove that `sin (alpha + beta) = (2ab)/(a^2 +b^2).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be the two different roots of equation a cos theta+b sin theta=c ,prove that : tan(alpha+beta)=(2ab)/(a^(2)-b^(2))

If alpha and beta be two different roots of the equation acos theta + b sin theta = c then prove that cos(alpha +beta) =(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the two different roots of equations a cos theta+b sin theta=c , prove that (a) tan (alpha+beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that cos alpha + cos beta = (2ac)/(a^(2)+ b^(2))

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha and beta be two roots of the equation a cos theta+ b sin theta=c , show that sin alpha+ sin beta=(2bc)/(a^(2)+b^(2)) ,sin alpha sin beta =(c^(2)-a^(2))/(a^(2)+b^(2)) and tan (alpha+ beta)=(2ab)/(a^(2)-b^(2))

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).