Home
Class 11
MATHS
Show that C0^2-C1^2+C2^2-C3^2+.............

Show that `C_0^2-C_1^2+C_2^2-C_3^2+...........+(-1)^n C_n^2=0` or `(-1)^(n/2)C_(n/2)` according as `n` is odd or even.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

Prove that C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+….+(-1)^(n).C_(n)^(2)={{:((-1)^(n//2)""^(n)C_(n//2)",","if n is even"),(" "0" ,","if n is odd"):}

Show that C_0 C_1 + C_1 C_2 + C_2 C_3 + .... + C_(n-1) C_n = (2n!)/((n-1)!(n+1!))

Show that C_0 + 3C_1 + 5C_2 + .... +(2n+1) C_n = (n+1)(2^n)