Home
Class 12
MATHS
Let y = sin^-1 (sin8) - tan^-1(tan 10) ...

Let `y = sin^-1 (sin8) - tan^-1(tan 10) + co^-1 '(cos1 2)-sec^-1 (sec9) + cot^-1(cot6) _ cosec^-1(cosec 7 )`. If y simplifies to `api + b` , then find `(a-b)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)(cos2)-cos^(-1)(sin2)+tan^(-1)(cot4)-cot^(-1)(tan4)+sec^(-1)(cosec6)-cosec^(-1)(sec6) is

The value of sin^(-1)(cos2)-cos^(-1)(sin2)+tan^(-1)(cot4)-cot^(-1)(tan4)+sec^(-1)(cos ec6)-cos ec^(-1)(sec6

sec^(2) (tan^(-1) 4) + cosec^(2) (cot ^(-1) 3) =?

Find the following values : (a) tan^(1) tan.(13pi)/(5) (b) sec^(-1) sec.(13pi)/(3) (c) sin^(-1) sin.(33pi)/(5) (d) sin^(-1) (sin 8) (e) tan^(-1) (tan 10) (f) sec^(-1) (sec 9) (g) cot^(-1) (cot 6) (h) cosec^(-1) (cosec 7)

Find the following values : (a) tan^(1) tan.(13pi)/(5) (b) sec^(-1) sec.(13pi)/(3) (c) sin^(-1) sin.(33pi)/(5) (d) sin^(-1) (sin 8) (e) tan^(-1) (tan 10) (f) sec^(-1) (sec 9) (g) cot^(-1) (cot 6) (h) cosec^(-1) (cosec 7)

Find the following values : (a) tan^(-1) (tan13pi/5) (b) sec^(-1)( sec13pi/3) (c) sin^(-1) (sin33pi/5 ) (d) sin^(-1) (sin 8) (e) tan^(-1) (tan 10) (f) sec^(-1) (sec 9) (g) cot^(-1) (cot 6) (h) cosec^(-1) (cosec 7)

sec^(2) ( tan^(-1)2) + cosec^(2) ( cot^(-1)3) =

Prove: sin θ(1 + tan θ) + cos θ(1 + cot θ) = (sec θ + cosec θ) .