Home
Class 11
MATHS
Prove that: cos((3pi)/2+x)cos(2x+x)[cot...

Prove that: `cos((3pi)/2+x)cos(2x+x)[cot((3pi)/2-x)+cot(2pi+x)]=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

Prove that cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

Prove that: cos((3pi)/2+x)cos(2pi+x){cot((3pi)/2-x)+"cot"(2pi+x)}=1

Prove that cos((3pi)/(2)+x)cos(2pi+x)[cot((3pi)/(2)-x)+cot(2pi+x)]=1

cos((3pi)/(2) +x) cos(2pi+x)[cot(3pi)/(2)-x+cot(2pi+x)]=1

Prove that cos((3pi)/(2)+x)cos(2pi+x).{cot((3pi)/(2)-x)+cot(2pi+x)}=1

Prove that: cos((3 pi)/(2)+x)cos(2pi+x)[cot((3 pi)/(2)-x)+cot(2 pi+x)]=1

Prove that: cos((3 pi)/(2)+x)cos(2 pi+x){cot((3 pi)/(2)-x)+cot(2 pi+x)}=1

Prove the following: cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

Prove the following: cos(3pi/2+x)cos(2pi+x)[cot(3pi/2-x)+cot(2pi+x)]=1