Home
Class 10
MATHS
The number of value of x satisfying 1+lo...

The number of value of `x` satisfying `1+log_5(x^2+1)geqlog_5(x^2+4x+1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of value of x satisfying 1+log_(5)(x^(2)+1)>=log_(5)(x^(2)+4x+1) is

The number of values of x satisfying 1 +"log"_(5) (x^(2) + 1) ge "log"_(5) (x^(2) + 4x +1) , is

The number of values of x satisfying 1 +"log"_(5) (x^(2) + 1) ge "log"_(5) (x^(2) + 4x +1) , is

The number of values of x satisfying 2^(log_5 16. log_4 x +x log_2 5) + 5^x + x^((log_5 4)+5) + x^5 = 0

The number of value(s) of x satisfying 1-log_9(x+1)^2=1/2log_(sqrt(3))((x+5)/(x+3)) is

The number of value(s) of x satisfying 1-log_(3)(x+1)^(2)=1/2log_(sqrt(3))((x+5)/(x+3)) is

The number of values of x satisfying 2^(log_5 16. log_4 x + log_(root(x)(2))5) + 5^x + x^((log_5 4)+5) + x^5 = 0

The value of x satisfying |x-1|^(log_(3)x^(2)-2log_(x)9)=(x-1)^(7) is