Home
Class 11
MATHS
int(e^(6loge x)-e^(5loge x))/(e^(4loge x...

`int(e^(6log_e x)-e^(5log_e x))/(e^(4log_e x)-e^(3log_e x))\ dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(6 log _e x)-e^(5 log_e x))/(e^(4 log _e x)-e^(3 log _e x))dx is equal to a) x^3/3+c b) x^2/2+c c) x^2/3+c d) (-x^3)/3+c

int(e^(6log x)-e^(5log x))/(e^(5log x)-e^(3log x))dx

int(e^(6log_(e)x)-e^(5log_(e)x))/(e^(4log_(e)xe^(3log_(e)x))) backslash dx

int (e^(6 log x) - e ^(5 log x))/( e^(4 log x) - e^(3 log x)) dx

int(e^(6 log x) - e^(5 log x))/(e^(4 log x) - e^(3 log x)) dx ……………. .

The value of int(e^(6log x)-e^(5log x))/(e^(4log x)-e^(3log x))dx is equal

Evaluate: int(e^(5(log)_e x)-e^(4(log)_ex))/(e^(3(log)_e x)-e^(2logx))dx

int(e^(6log x) -e^(5log x ))/(e^(4log x) -e^(3log x)) dx= ax^(3) +bx^(2) +c

The value of int (e^(6 log x) - e^(5 log x))/(e^(4 log x) - e^(3 log x))dx is equal to