Home
Class 11
MATHS
The line x cosalpha + y sinalpha = p wil...

The line `x cosalpha + y sinalpha = p` will be a tangent to the circle `x^2 + y^2-2ax cos alpha-2ay sinalpha = 0`.1f p =

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of p so that the straight line x cos alpha + y sin alpha - p may touch the circle x^(2) + y^(2)-2ax cos alpha - 2ay sin alpha = 0 .

The line x cos alpha+y sin alpha=p touches the circle x^(2)+y^(2)-2ax cos alpha-2ay sin alpha=0. then p=

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

The line x cos alpha + y sin alpha = p is tangent to the ellipse (x^(2))/(a^(2)) +(y^(2))/(b^(2)) = 1 if :

If the line x cosalpha + y sin alpha = P touches the curve 4x^3=27ay^2 , then P/a=

The condition that the line x cos alpha + y sin alpha =p to be a tangent to the hyperbola x^(2)//a^(2) -y^(2)//b^(2) =1 is