Home
Class 11
MATHS
If (x+iy)^2(c+id)^2=a+ib then (x^2+y^2)^...

If `(x+iy)^2(c+id)^2=a+ib` then `(x^2+y^2)^k(c^2+d^2)=a^2+b^2` where k is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z = x + iy, z^(1//3) = a - ib , then x/a - y/b = ka^2 - b^2 , where k is equal to :

If (a+ib)^2=x+iy then x^2+y^2 =

If (a+ib)(c+id)=x+iy ,prove that x^2+y^2=(a^2+b^2)(c^2+d^2)

If x -iy = sqrt([(a - ib)/(c-id)]) , then (x^(2) + y^(2))^(2) =

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

If x+iy=((a+ib)/(c+id))^(1//2) ,show that (x^2+y^2)=(a^2+b^2)/(c^2+d^2)