Home
Class 11
MATHS
b sinB - c sinC = a sin(B-C)...

b sinB - c sinC = a sin(B-C)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that a sinA - b sinB = c sin(A-B)

If A+B+C=pi , prove that : sin (B+C-A) + sin (C+A-B) + sin (A+B-C)=4sinA sinB sinC

If A+B+C=pi , prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (cosC)/(sinA sinB) =2 .

If A+B+C=pi , prove that : (cosA)/(sinb sinC) + (cosB)/(sinC sin) + (cosC)/(sinA sinB) =2 .

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)

In Delta ABC, if (Sin A + SinB + SinC) (SinA + SinB - SinC) = 3SinA SinB then C =

In Delta ABC, if (Sin A + SinB + SinC) (SinA + SinB - SinC) = 3SinA SinB then C =