Home
Class 11
MATHS
If z=3-4i then z^4-3z^3+3z^2+99z-95 is e...

If `z=3-4i` then `z^4-3z^3+3z^2+99z-95` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z = ( 7-i)/(3-4i) , " then " z^(14) is equal to :

If the fourth roots of unity are z_1,z_2,z_3,z_4 then z_1^2+z_2^2+z_3^2+z_4^2 is equal to

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29

If z= e^((2pi i)/(3)) , then 1+z+3z^(2)+2z^(3)+2z^(4)+3z^(5) is equal to

Suppose z_(1), z_(2), z_(3) are vertices of an equilateral triangle whose circumcentre -3 + 4i, then |z_(1) + z_(2) + z_(3)| is equal to

If z_1 z_2 = 5 & z_1^3 z_2^3 = 20 15 i then |z_1^4 z_2^4| is equal to

Z=-5+4i then Z^4 +9Z^3 +35Z^2 – Z + 4 =

If z=(3+4i)/i ,then find |z|

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to (A) 3 (B) 36 (C) 216 (D) 1296