Home
Class 11
MATHS
If lm(x->oo) f(x) exists and is finite ...

If `lm_(x->oo) f(x)` exists and is finite and nonzero and if `lim_(x->oo) {{f(x)+(3f(x)−1)/(f_2(x))}=3`,then the value of `lim_(x->oo) f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then find the value of lim_(x->oo) f(x)

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

If lim_(xtooo) f(x) exists and is finite and nonzero and if lim_(xtooo) {f(x)+(3f(x)-1)/(f^(2)(x))}=3 , then the value of lim_(xtooo) f(x)" is " _______.

If lm_(x rarr oo)f(x) exists and is finite and nonzero and if lim_(x rarr oo){{f(x)+(3f(x)-1)/(f_(2)(x))}=3 then the value of lim_(x rarr oo)f(x) is ]}

If lim_(x rarr oo)f(x) is finite and non zero and lim_(x rarr oo)(f(x)+((3f(x)+1)/(f^(2)(x)))=3 then find the value of lim_(x rarr oo)f(x)

lim_(x rarr oo) (1+f(x))^(1/f(x))

Let f:rarr R rarr(0,oo) be strictly increasing function such that lim_(x rarr oo)(f(7x))/(f(x))=1 .Then, the value of lim_(x rarr oo)[(f(5x))/(f(x))-1] is equal to

Let f(x)=(lim)_(n->oo)(2x^(2n)sin1/x+x)/(1+x^(2n))\ then find :\ (lim)_(x->-oo)f(x)

If f(x) = sqrt((x-sinx)/(x+cos^(2)x)) , then lim_(x rarr oo) f(x) =