Home
Class 11
MATHS
If f(x)={(sinx, x != npi " and " n in I2...

If `f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):}` and `g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):}` then `lim_(x->0) g{f(x)}` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(sinx, x != npi " and " n in Z), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):} and g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):} then find lim_(xto0) g{f(x)} .

If f(x)={{:(,sin x,x ne npi, n in Z),(,,2,"otherwise"):} and g(x)={{:(,x^(2)+1,x ne 0","2),(,4,x=0),(,5,x=2):}"then " underset(x to 0)"Lt" g(f(x))=

If f(x) = {{:(sin x"," x ne npi"," n = 0"," pm1"," pm2","...),(" 2, ""otherwise"):}} and g (x) ={{:(x^(2)+1"," x ne 0","2),(" 4, "x=0),(" 5, "x=2):}},"then" lim_(x to 0) g[f(x)] is ………

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

If f(x)=(x) and g(x)=(5x-2) Find f0g and g0f

If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt1),(x^(2)-2x-2",",1lexlt2),(x-5",",xge2):} Then the value of lim_(xrarr0) g(f(x))

If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt1),(x^(2)-2x-2",",1lexlt2),(x-5",",xge2):} Then the value of lim_(xrarr0) g(f(x))