Home
Class 11
MATHS
Let Sk=1+q+q^2+...+q^k and Tk=1+(q+1)/2+...

Let `S_k=1+q+q^2+...+q^k` and `T_k=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^k` `q!=1` then prove that `sum_(r=1)^(n+1) ^(n+1)C_rS_(r-1)=2^ nT_n`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given, s_n=1+q+q^2+.....+q^n ,S_n=1+(q+1)/2+((q+1)/2)^2+... +((q+1)/2)^n ,q!=1 prove that "^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2+......+^(n+1)C_(n+1)s_n=2^n S_ndot

Given, s_n=1+q+q^2+.....+q^n ,S_n=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^n ,q!=1 prove that "^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2+......+^(n+1)C_(n+1)s_n=2^n S_ndot

Given, s_n=1+q+q^2+.....+q^n ,S_n=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^n ,q!=1 prove that "^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2+......+^(n+1)C_(n+1)s_n=2^n S_ndot

Given, s_n=1+q+q^2++q^n ,S_n=1+(q+1)/2+((q+1)/2)^2++((q+1)/2)^n ,q!=1 prove that .^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2++^(n+1)C_(n+1)s_n=2^n S_ndot

prove that sum_(k=1)^(n)k2^(-k)=2[1-2^(-n)-n*2^(-(n+1)))

Given,s_(n)=1+q+q^(2)+....+q^(n),S_(n)=1+(q+1)/(2)+((q+1)/(2))^(2)+...+((q+1)/(2))^(n),q!=1 prove that ^(n+1)C_(1)+^(n+1)C_(2)s_(1)+^(n+1)C_(3)s_(2)+......+^(n+1)C_(n+1)s_(n)=2^(n)S_(n)

If p+q=1, then show that sum_(r=0)^n r^2^n C_rp^r q^(n-r)=n p q+n^2p^2dot

If p+q=1, then show that sum_(r=0)^n r^2^n C_rp^r q^(n-r)=n p q+n^2p^2dot

Given s=1+q+q^(2)+...+q^(n),S_(n)=1+(q+(1)/(2))+(q+(1)/(2))^(2)+......+(q+(1)/(2))^(n) then prove that ^(n+1)C_(1)+^(n+1)C_(2)s_(1)+......,+^(n+1)C_(n+1)s_(n)=2^(n)s_(n)

Let S_n=1+q+q^2 +...+q^n and T_n =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n If alpha T_100=^101C_1 +^101C_2 x S_1 ...+^101C_101 x S_100, then the value of alpha is equal to (A) 2^99 (B) 2^101 (C) 2^100 (D) -2^100