Home
Class 12
MATHS
Show that vecaxx(vecbxxvec c)+vecbxx(vec...

Show that `vecaxx(vecbxxvec c)+vecbxx(vec c xxvecb)+vec cxx(vecaxxvecb)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

Prove that vecaxx(vecbxxvecc)+ vecbxx(veccxxveca)+veccxx(vecaxxvecb) = 0 and hence prove that vecaxx(vecbxxvecc), vecbxx(veccxxveca), veccxx(vecaxxvecb) are coplanar.

Show that the vectors vecaxx(vecbxxvecc) ,vecbxx(veccxxveca) and veccxx(vecaxxvecb) are coplanar.

For any three vectors veca , vec b , vec c show that vecaxx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)= vec0

Show that vecaxx(vecb+vecc)+vecbxx(vecc+veca)+veccxx(veca+vecb)=vec0.

Show that the vectors vecaxx (bvecxxvecc),vecbxx(veccxxveca) and veccxx(vecaxxvecb) are coplanar.

For any three vectors a b,c, show that vec a xx (vec b +vec c)+vec b xx (vec c +vec a) +vec cxx(vec a + vec b)=0

If (vecaxxvecb)xxvecc=vecax(vecbxxvecc0 then (A) (veccxxveca)xxvecb=0 (B) vecbxx(veccxxveca)=0 (C) veccxx(vecaxxvecb)=0 (D) none of these

If (vecaxxvecb)xxvecc=vecax(vecbxxvecc) then (A) (veccxxveca)xxvecb=0 (B) vecbxx(veccxxveca)=0 (C) veccxx(vecaxxvecb)=0 (D) none of these