Home
Class 11
MATHS
If y=tan^(- 1)[(1-2logx)/(1+2logx)]+tan^...

If `y=tan^(- 1)[(1-2logx)/(1+2logx)]+tan^(- 1)[(3+2logx)/(1-6logx)],` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)[(logex)/(log (e/x))] + tan^(-1)[(8-logx)/(1+8 logx)] , then (d^(2)y)/(dx^(2)) is

If y=tan^(-1)[(logex)/(log (e/x))] + tan^(-1)[(8-logx)/(1+8 logx)] , then (d^(2)y)/(dx^(2)) is

If y = tan^(-1)[(x/log ex^3)] + tan^(-1)[(5 + 3logx)/(1-15logx)] then find (dy)/(dx) .

If y=tan^-1((log(e/x^2))/(log(ex^2)))+tan^-1((3+2logx)/(1-6logx)), then (d^2y)/(dx^2) is (a) 2 (b) 1 (c) 0 (d) -1

If f(x)=tan^(-1)[(log((e)/(x^(2))))/(log(ex^(2)))]+tan^(-1)[(3+2logx)/(1-6logx)] then the value of f''(x) is

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(--1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(-1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(-1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

tan^(-1)(logx)

∫ (1)/(x.logx.(2+logx))