Home
Class 12
MATHS
If the determinant |(cos2x,sin^2 x,cos ...

If the determinant `|(cos2x,sin^2 x,cos 4x),(sin^2 x,cos 2x,cos^2 x),(cos 4x,cos^2 x,cos 2x)|` is expanded in powers of `sin x`, then the constant term is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the determinant |(cos2x, sin^2x,cos4x),(sin^2x , cos2x,cos^2x),(cos4x,cos^2x,cos2x)| is expanded in powers of sinx , then the constant term in the expansion is :

When the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,cos^(2)x),(cos4x,,cos^(2)x,,cos 2x):}| expanded in powers of sin x, then the constant term in that expression is

When the determinant |{:(cos2x,sin^(2)x,cos4x),(sin^(2)x,cos2x,cos^(2)x),(cos4x,cos^(2)x,cos2x):}| is expanded in powers of sin x , the constant term is equal to expression is

When the determinant |{:(cos2x,sin^(2)x,cos4x),(sin^(2)x,cos2x,cos^(2)x),(cos4x,cos^(2)x,cos2x):}| is expanded in powers of sin x , the constant term in than or equal to expression is

If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

" If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

(sin x + cos x)^2 + (sin x - cos x)^2

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)