Home
Class 11
MATHS
If 2^x.3^(2x)=100 then x belong to...

If `2^x.3^(2x)=100` then x belong to

Promotional Banner

Similar Questions

Explore conceptually related problems

2^(x)xx3^(2x)=100 then x belongs to

2^(x)xx3^(2x)=100 then x belongs to

If x^(2) > 9 then x belongs to -

|x+(2)/(x)|<3 then x belongs to

If x satisfies the inequality log_(x+3)(x^(2)-x)<1 then x may belong to the interval

If 2^(x) 3^(2x) =100 then the value of x is (log 2 = 0.3010, log 3 = 0.4771)

If 2^(x).3^(2x)=100 , then the value of x is (log2=0.3010,log3=0.4771)

(x+1)(x+2)(x+3)(x^(2)4x+8)(x-2)=0, then x belongs to

If -1<=[2x^(2)-3]<2, then x belongs to