Home
Class 11
MATHS
If logx(4x^(log5(x)) +5) = 2log5x, then...

If `log_x(4x^(log_5(x)) +5) = 2log_5x`, then x equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

Let x_(1) and x_(2) be two solutions of the equalition log_(x)(3x^(log_(5)x)+4) = 2log_(5)x , then the product x_(1)x_(2) is equal to

if log_(k)x*log_(5)k=log_(x)5 then xis equal to

if log_(k)x*log_(5)k=log_(x)5 then xis equal to

If (log_(5)x)(log_(x)3x)(log_(3x)y)=log_(x)x^(3) , then y equals