Home
Class 11
MATHS
If x=t^3+t+5 and y=sint then (d^2y)/(dx^...

If `x=t^3+t+5` and `y=sint` then `(d^2y)/(dx^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If x=t^3+t+5 & y=sint then (d^2y)/(dx^2)= (a) -((3t^2+1)sint+6tcost)/((3t^2+1)^3) (b) ((3t^2+1)sint+6tcost)/((3t^2+1)^3) (c) -((3t^2+1)sint+6tcost)/((3t^2+1)^2) (d) (cost)/(3t^2+1)

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= (a) -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=t^(2),quad y=t^(3), then (d^(2)y)/(dx^(2))=3/2(b)3/4t(c)3/2t(d)3t/2

If x = e^(t)sint, y =e^(t)cost then (d^2y)/(dx^2) at t = pi is

IF y=(cost)^5 and x=sint then the value of 2((d^2y)/(dx^2)) at t=(2pi)/9 is-