Home
Class 12
MATHS
Let f(x) is a continuous function which ...

Let `f(x)` is a continuous function which takes positive values for `xgeq0` and satisfy `int_0^x f(t) dt= xsqrt(f(x))` with f(1)= 1/2 . Find the value of `f(sqrt2+1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous function which takes positive values for xge0 and satisfy int_(0)^(x)f(t)dt=x sqrt(f(x)) with f(1)=1/2 . Then

Let f(x) be a continuous function which takes positive values for xge0 and satisfy int_(0)^(x)f(t)dt=x sqrt(f(x)) with f(1)=1/2 . Then

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is