Home
Class 12
MATHS
dy/dx = 2((y+2)^2)/(x+y-1)^2...

`dy/dx = 2((y+2)^2)/(x+y-1)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (dy)/(dx)=(y^(2)+2y)/(x-1)

Integral curve staisfying (dy)/(dx)=(x^2+y^2)/(x^2-y^2) , y (1) = 1 has the slope at the point (1,0) of the curve equal to :

The solution of differential equation x^2=1 +(x/y)^(-1)(dy)/(dx)+((x/y)^-2((dy)/(dx))^2)/(2!)+((x/y)^(-3)((dy)/(dx))^3)/(3!)+... i s

The solution of differential equation x^2=1 +(x/y)^(-1)(dy)/(dx)+((x/y)^-2((dy)/(dx))^2)/(2!)+((x/y)^(-3)((dy)/(dx))^3)/(3!)+... i s

Solve: x+y dy/dx=(a^2((x dy/dx-y))/(x^2+y^2))

Solve: x+y dy/dx=(a^2((x dy/dx-y))/(x^2+y^2))

Solve: (dy) / (dx) = (y (x + 2y)) / (x (2x + y)), y (1) = 2

The solution of (dy)/(dx)=(x^2+y^2+1)/(2x y) satisfying y(1)=1 is given by

The solution of (dy)/(dx)=(x^2+y^2+1)/(2x y) satisfying y(1)=1 is given by

The solution of (dy)/(dx)=(x^2+y^2+1)/(2x y) satisfying y(1)=1 is given by