Home
Class 12
MATHS
Find the differentiable function which s...

Find the differentiable function which satisfies the equation `f(x)= -int_0^x f(t) tant dt + int_0^x tan(t-x)dt` where `x in (-pi/2,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_0^x tf(t)dt+2, then

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=int_0^x(sint)/t dt ,x >0, then

A derivable function f(x) satisfies the relation f(x)=int_(0)^(1)xf(t)dt+int_(0)^(x)x^(2)f(t)dt. The value of (2f'(1))/(f(1)) is

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is