Home
Class 10
MATHS
Given a^2+b^2=1, c^2+d^2=1, p^2+q^2=1, w...

Given `a^2+b^2=1`, `c^2+d^2=1`, `p^2+q^2=1`, where all numbers are real, then
(1)    `ab+cd+pq >= 1`
(2)    `ab+cd+pq <3`
(3)    `ab+cd+pq >= 3`
(4)    `ab+cd+pq <= 3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The given figure shows the graph of the polynomial f(x)=ax^2+bx+c , then (1)    a>0 , b 0 (2)    a>0 , b (3)    a 0 and c>0 (4)    a 0 and c<0

The number of solutions of z^2+bar z=0 is (a) 1           (b) 2 (c) 3           (d) 4

If x ÷ 1 = 8 , then x is equal to ( a )   8   ( b )   1   ( c )   -8   ( d )   -1  

If f(x) = { x , x ( 1 )  1   ( 2 )   4/3   ( 3 )   5/3   ( 4 )   5/2  

In an AP, S_p=q , S_q=p . Then S_(p+q) is equal to: a.     0 b.     -(p+q) c.     (p+q) d.     pq

If y - 9 = ( - 4 ) , then y is equal to : ( a )   3   ( b )   4   ( c )   5   (d )   7  

If   2^x - 4^(2x-1) = 0 , then x = (a)   2/3   (b)   -2/3   (c)   3/2   (d)   -3/2

Find the value of ( 1+ 1/iota )^4 is : ( a )   0   ( b )  -4   ( c )   4   ( d )   3

The number of integral pairs (x,y) satisfying the equation (x-y)^2+2y^2=27 is: a.    8 b.    7 c.    6 d.    5

Find the value of [ 8^(-4/3) ÷ 2^-2 ]^(1/2) ( a )  1/2   ( b )   2   ( c )   1/4   ( d )  4