Home
Class 12
MATHS
The value of int0^1(x^4(1-x)^4)/(1+x^2)d...

The value of `int_0^1(x^4(1-x)^4)/(1+x^2)dxi s//a r e` `(22)/7-pi` (b) `2/(105)` `0` (d) `(71)/(15)-(3pi)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^1(x^4(1-x)^4)/(1+x^2)dx is/are (a) (22)/7-pi (b) 2/(105) (c) 0 (d) (71)/(15)-(3pi)/2

The value of int_0^1(x^4(1-x)^4)/(1+x^2)dx is/are (a) (22)/7-pi (b) 2/(105) (c) 0 (d) (71)/(15)-(3pi)/2

The value of int_0^1(x^4(1-x)^4)/(1+x^2)dx is/are (a) (22)/7-pi (b) 2/(105) (c) 0 (d) (71)/(15)-(3pi)/2

The value of int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx is/are (a) (22)/(7)-pi( b) (2)/(105)( c) 0 (d) (71)/(15)-(3 pi)/(2)

The value of int_0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dxi s

7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

The value of int_0^(pi/2) (dx)/(1+tan^3 x) is (a) 0 (b) 1 (c) pi/2 (d) pi

The value of the integral int_0^1sqrt((1-x)/(1+x))dx i s (a) pi/2+1 (b) pi/2-1 (c) -1 (d) 1

The value of the integral int_0^1sqrt((1-x)/(1+x))dx i s (a) pi/2+1 (b) pi/2-1 (c) -1 (d) 1