Home
Class 12
MATHS
If |[b^2+c^2,ab,ac] , [ba,c^2+a^2,bc] , ...

If `|[b^2+c^2,ab,ac] , [ba,c^2+a^2,bc] , [ca,cb,a^2+b^2]|`= a square of a determinant `Delta` of the third order then `Delta=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Prove the identity: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Prove the identities: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

Prove the identities: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2