Home
Class 12
MATHS
Let A=[[x+lambda,x,x] , [x,x+lambda,x] ,...

Let `A=[[x+lambda,x,x] , [x,x+lambda,x] ,[x,x,x+lambda]]` then`A^(-1)` exists if (A) `x!=0` (B) `lambda!=0` (C) `3x+1!=0`, `lambda!=0` (D) `x!=0`, `lambda!=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(x+lambda,x,x), (x,x+lambda,x), (x,x,x+lambda)]. Then A^(-1) exists if (A) xne0 (B) lambdane0 (C) 3x+lambdane0, lambdane0 (D) xne0,lambdane0

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If |(x+lambda,x,x),(x,x+lambda,x),(x,x,x+lambda)| = 0, (lambda != 0) then a) x = - lambda//3 b) x = 3 lambda c)x = 0 d)None of these

Let f(x) = lambda + mu|x|+nu|x|^2 , where lambda,mu, nu in R , then f'(0) exists if

The roots of det[[x,a,b,1lambda,x,b,1lambda,mu,x,1lambda,mu,v,1]]=0 are

Let f(x)=lambda+mu|x|+nu|x|^(2), where lambda,mu,nu in R, then f'(0) exists if