Home
Class 11
MATHS
(1+x)^n = a0 + a1x + a2*x^2 +......... +...

`(1+x)^n = a_0 + a_1x + a_2*x^2 +......... + a_nx^n` then prove that

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_1 +a_2 + ……a_(2n) = 3^n

If (1 + x +x^2)^n = a_0 =a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_1 +a_3 +a_5 + …..a_(2n - 1) = (3^n - 1)/(2)

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+.......+a_(2n)x^(2n) , then prove that a_0+a_2+a_4+....+a_(2n)=1/2(3^n+1) .

If (1 - x + x^2)^n = a_0 + a_1 x + a_2x^2 + ..... + a_(2n)x^(2n) then a_0 + a_2 + a_4 + ... + a_(2n) equals

If (1 + 3x - 2x^2)^10 = a_0 + a_1x + a_2x^2 +…..+a_20 x^20 thn prove that a_0 + a_2 +a_4+ …..+ a_20 = 2^9+ 2^19

If (1 - x + x^2)^n = a_0 + a_1x + a_2x^2 +...+ a_(2n) x^(2n) then a_0 + a_2 + a_4 +...+ a_(2n) is equal to

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :