Home
Class 12
MATHS
The sum Sn where Tn=(-1)^n(n^2+n+1)/(n !...

The sum `S_n` where `T_n=(-1)^n(n^2+n+1)/(n !)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_n = 1 (n - 1) + 2. (n -2) + 3. (n - 3) +…+ (n -1).1, n ge 4. The sum sum_(n = 4)^oo ((2S_n)/(n!) - 1/((n - 2)!)) is equal to :

Let S_n = 1 (n - 1) + 2. (n -2) + 3. (n - 3) +…+ (n -1).1, n ge 4. The sum sum_(n = 4)^oo ((2S_n)/(n!) - 1/((n - 2)!)) is equal to :

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

If S_(n)=(1)/(6) n(n+1)(n+2) is the sum to n terms of a series whose n^(th) term is T_(n) , then lim _(n rarr oo) sum_(r=1)^(n) (1)/(T) is