Home
Class 12
MATHS
Prove that: y=int(1/8)^(sin^2x)sin^(-1)...

Prove that: `y=int_(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int_(1/8)^(cos^2x)cos^(-1)sqrt(t)`,where `0lt=xlt=pi/2`, is the equation of a straight line parallel to the x-axis. Find the equation.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: y=int_(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int_(1/8)^(cos^2x)cos^(-1)sqrt(t) dt , where 0lt=xlt=pi/2 , is the equation of a straight line parallel to the x-axis. Find the equation.

Prove that: y=int_((1)/(8))^(sin^(2)x)sin^(-1)sqrt(t)dt+int_((1)/(8))^(cos^(2)x)cos^(-1)sqrt(t) where 0<=x<=(pi)/(2), is the equation of a straight line parallel to the x-axis.Find the equation.

int_(0)^(sin^(2)x) sin^(-1) sqrt(t) dt + int_(0)^(cos^(2)x) cos^(-1) sqrt(t) dt=

The value of int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt is

The value of int_(0)^(sin^(2)) sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)dt , is

The value of int _0^(sin^2x)sin^(-1)sqrt(t)dt+int _0^(cos^2x)cos^(-1)sqrt(t)dt is

The value of int_0^(sin^2x)sin^(-1)(sqrtt)dt+int_0^(cos^2x)cos^(-1)(sqrtt)dt is