Home
Class 11
MATHS
("lim")(xvec0)[min(y^2-4y+11)(sinx)/x](w...

`("lim")_(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e` greatest integer function is 5 (b) 6 (c) 7 (d) does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)[min(y^(2)-4y+11)(sin x)/(x)](where[.] denotes the greatest integer function is 5(b)6(c)7(d) does not exist

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where[dot] denotes the greatest integer function, is equal to 0 (b) 1 (c) -1 (d) does not exist

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a)-1 (b) 1 (c) 0 (d) does not exist

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: ("lim")_(xvec0)(sinx)/x,w h e r e[dot] represents the greatest integer function.

("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot] denotes the greatest integer function is equal to (a) 0 (b) -1 (c) not exist (d) none of these

("lim")_(xvec1)(xsin(x-[x]))/(x-1),w h e r e[dot] denotes the greatest integer function is equal to 0 (b) -1 (c) non-existent (d) none of these