Home
Class 12
MATHS
Find th altitude of a parallelepiped who...

Find th altitude of a parallelepiped whose three coterminous edges are vectors `vecA=hati+hatj+hatk,vecB=2hati+4hatj-hatkand vecC=hati+hatj+3hatk "with" vecA and vecB` as the sides of the base of the parallelepiped .

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the volume of a parallelopiped whose edges are represented by the vectors: veca =2hati-3hatj-4hatk, vecb=hati+2hatj-2hatk, and vecc=3hati+hatj+2hatk .

The volume of the parallelepiped whose edges are veca=2hati-3hatj+4hatk, vecb=hati+2hatj-hatk and vecc=2hati-hatj+2hatk is

The volume of the parallelepiped whose edges are veca=2hati-3hatj+4hatk, vecb=hati+2hatj-hatk and vecc=2hati-hatj+2hatk is

The volume of the parallelepiped formed by the vectors, veca=2hati+3hatj-hatk, vecb = hati-4hatj+2hatk and vecc=5hati+hatj+hatk is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=