Home
Class 11
MATHS
Let m be the smallest positive integer s...

Let m be the smallest positive integer such that the coefficient of `x^2` in the expansion of `(1+x)^2 + (1 +x)^3 + (1 + x)^4 +........+ (1+x)^49 + (1 + mx)^50` is `(3n + 1) .^51C_3` for some positive integer n. Then the value of n is

Text Solution

Verified by Experts

Coefficient of `x^(2)` in expansion
`= 1+.^(3)C_(2)+.^(4)C_(2)+.^(5)C_(2) + "….." + .^(49)C_(2)+.^(50)C_(2).m^(2)`
[as `.^(n)C_(r)+.^(n)C_(r-1) = .^(n+1)C_(r)`]
`= (.^(3)C_(5)+.^(3)C_(2)) + .^(4)C_(2) + .^(5)C_(2) + "…." + .^(49)C_(2) + .^(50)C_(2)m^(2)`
`= (.^(4)C_(3) + .^(4)C_(2)) + "....." + .^(50)C_(2)m^(2)`
`= .^(5)C_(3) + .^(50)C_(2)m^(2) + .^(50)C_(2)m^(2)`
`= .^(50)C_(3) + .^(50)C_(2)m^(2)+.^(50)C_(2)-.^(50)C_(2)`
`= .^(51)C_(3)+.^(50)C_(2)(m^(2)-1)`
`= (3n+1).^(51)C_(3)` (given)
`:. 3n.(51)/(3).^(50)C_(2) = .^(50)C_(2)(m^(2) - 1)`
`(m^(2)-1)/(51) = n`
Value of n is 5.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let m be the smallest positive integer such that the coefficient of x^2 in the expansion of (1+x)^2 + (1 +x)^3 + (1 + x)^4 +........+ (1+x)^49 + (1 + mx)^50 is (3n + 1) .^51C_3 for some positive integer n. Then find the value of n.

Let m be the smallest positive integer such that the coefficient of x^(2) in the expansion of (1+x)^(2)+(1+x)^(3) + "……." + (1+x)^(49) + (1+mx)^(50) is (3n+1) .^(51)C_(3) for some positive integer n, then the value of n is "_____" .

Let , m be the the smallest positive interger such that the coefficient of x^(2) in the expansion of (1+x)^(2)+(1+x)^(3)+....+(1+x)^(49)+(1+mx)^(50) " is " (3n+1)^(51)C_(3) for some positive integer n . Then the value of n is ,

The coefficient of x^(n) in the expansion of ((1+x)^(2))/((1 - x)^(3)) , is

The coefficient of x^(n) in the expansion of ((1+x)^(2))/((1 - x)^(3)) , is

If n is a positive integer,then the coefficient of x^(n) in the expansion of ((1+2x)^(n))/(1-x) is

If n is a positive integer, find the coefficient of x^(-1) in the expansion of (1+x)^n(1+1/x)^ndot

If n is a positive integer,find the coefficient of x^(-1) in the expansion of (1+x)^(n)(1+(1)/(x))^(n)

If n is a positive integer then the coefficient of x ^(-1) in the expansion of (1+x) ^(n) (1+ (1)/(x)) ^(n) is-