Home
Class 12
MATHS
The maximum value of f(x)=x/(4-x+x^2) o...

The maximum value of `f(x)=x/(4-x+x^2)` on `[-1,1]` is (a)`1/4` (b) `-1/3` (c) `1/6` (d) `1/5`

Promotional Banner

Similar Questions

Explore conceptually related problems

the maximum value of f(x)=x/(4+x+x^2) on [-1,1] is (i) -1/4 (ii)-1/3 (iii)1/6 (iv)1/b

The maximum value of f(x)=x/(1+4x+x^2) is -1/4 (b) -1/3 (c) -1/6 (d) 1/6

The maximum value of f(x)=x/(1+4x+x^2) is -1/4 (b) -1/3 (c) 1/6 (d) 1/6

The maximum value of f(x)=x/(1+4x+x^2) is -1/4 (b) -1/3 (c) 1/6 (d) 1/6

The maximum value of f(x)=(x)/(1+4x+x^(2)) is -(1)/(4) (b) -(1)/(3)(c)(1)/(6)(d)(1)/(6)

Minimum value of f(x)=2x^(2)-4x+5 is 1 (b) -1(c)11 (d) 3

The value of lim_(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is (a)4 (b) 1/2 (c) 2 (d) 1/4

The value of lim_(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is 4 (b) 1/2 (c) 2 (d) 1/4

The value of lim_(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is 4 (b) 1/2 (c) 2 (d) 1/4

The maximum value of the function f(x)=(x^(4)-x^(2))/(x^(6)+2x^(3)-1) where x>1 is equal to: