Home
Class 10
MATHS
Show that If a(b-c) x^2 + b(c-a) xy + c(...

Show that If `a(b-c) x^2 + b(c-a) xy + c(a-b) y^2 = 0` is a perfect square, then the quantities a, b, c are in harmonic progresiion

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that If a(b-c) x^2 + b(c-a) xy + c(a-b) y^2 = 0 is a perfect square, then the quantities a, b, c are in harmonic progression

If a(b-c)x^(2)+b(c-a)x+c(a-b) is a perfect square then a,b,c are in

If the expression a(b-c)x^(2)+b(c-a)xy+c(a-b)y^(2) is a perfect square, then a,b,c are in

52 Show that a(b-c)x^(2)+b(c-a)xy+c(a-b)y^(2) will be a perfect square if a,b,c are in H.P

If a(b-c)x^(2)+b(c-a)xy+c(a-b)y^(2)=0 is a perfect square,then (log(a+c)+log(a-2b+c))/(log(a-c)) is equal to

If the roots of the quadratic equation a(b-c)x^2+b(c-a)+c(a-b)=0 be equal then prove that a,b,c are in Harmonic progression .

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is