Home
Class 11
MATHS
The reflection of the complex number (2-...

The reflection of the complex number `(2-i)/(3+i)` , (where `i=sqrt(-1)` in the straight line `z(1+i)= bar z (i-1)` is `(-1-i)/2` (b) `(-1+i)/2` `(i(i+1))/2` (d) `(-1)/(1+i)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The reflection of the complex number (2-i)/(3+i) where (i=sqrt(-1) in the straight line z(1+i)=barz(i-1) is

Consider the complex number z=(2+i)/((1+i)(1-2i)) (i) Express z in the form a+ib .

Consider the complex number Z=(2+i)/{(1+i)(1-2i)} Represent Z in the polar form.

Consider the complex number Z=(2+i)/{(1+i)(1-2i)} Express Z in the form of a+ib .

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z=(-2(1+2i))/(3+i) where i=sqrt(-1) then argument theta(-pilt thetalepi) of z is