Home
Class 12
MATHS
DEFINITE INTEGRAL | PROPERTIES OF DEFINI...

DEFINITE INTEGRAL | PROPERTIES OF DEFINITE INTEGRALS, SOME SPECIAL RESULTS | Property 9: If f(x) is a continuous function defined on `[-a; a]` then `int_(-a) ^a f(x) dx = 0` if f(x) is odd and `2 int_0 ^a f(x) dx` if f(x) is even, Examples: `int_(-pi/2) ^(pi/2) sin^2x dx`, Property 10: If `f(x)` is a continuous function defined on `[0, 2a]` then `int_0 ^(2a)f(x)dx = 2 int_0 ^a f(x) dx`; if `f(2a-x) = f(x)` and 0 if `f(2a-x) = -f(x)`, Examples: `int_(-1) ^1 e^|x|dx`, Examples: `int_(-pi/2) ^(pi/2) (x sinx) / (e^x + 1) dx`, Examples: `int_0 ^(2pi) cos^5x dx`, Integration of `Sinx` in different range, Integration of `sin^2x` or `cos^2x` in different range, `int_0 ^(pi/2) log sinx dx = int_0 ^(pi/2) log cosx dx = 1/2 (pi) log(1/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Property 9: If f(x) is a continuous function defined on [-a;a] then int_(-a)^(a)f(x)dx=0 if f(x) is odd and 2int_(0)^(a)f(x)dx if f(x) is even

Property 8: If f(x) is a continuous function defined on [-a; a] then int_(-a) ^a f(x) dx = int_0 ^a {f(x) + f(-x)} dx

Property 5: If f(x) is a continuous function defined on [0;a] then int_(0)^(a)f(x)dx=int_(0)f(a-x)dx

Property 8: If f(x) is a continuous function defined on [-a;a] then int_(-a)^(a)f(x)dx=int_(0)^(a){f(x)+f(-x)}dx

Property 10: If f(x) is a continuous function defined on [0;2a] then int_(0)^(2)a=2int_(0)^(a)f(x)dx if f(2a-x)=f(x) and 0 if f(2a-x)=-f(x)

Property 6: If f(x) is a continuous function defined on [0;2a] then int_(0)^(2)a=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx