Home
Class 11
MATHS
arg(z/barz)=arg(z)-arg(barz)=2 arg(z)...

`arg(z/barz)=arg(z)-arg(barz)=2 arg(z)`

Promotional Banner

Similar Questions

Explore conceptually related problems

arg(bar(z))=-arg(z)

arg((z)/(bar(z)))=arg(z)-arg(bar(z))

arg((1)/(bar(z)))=arg((zbar(z))/(bar(z)))

The value of sqrt({arg(z)+arg(-bar(z))-2 pi}{arg(-z)+arg(bar(z))})AA z=x+iy,x,y>0 is

if z_1=1+isqrt3 , z_2=sqrt3-i show that (a)arg (z_1z_2)=arg(z_1)+arg(z_2) and (b) arg(z_1//z_2)=arg(z_1)-arg(z_2)

If z, z_1 and z_2 are complex numbers, prove that (i) arg (barz) = - argz (ii) arg (z_1 z_2) = arg (z_1) + arg (z_2)

arg(z_(1)z_(2))=arg(z_(1))+arg(z_(2))

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arg(z) gt 0 , then arg (-z)-arg(z) is equal to

arg(bar(z))+arg(-z)={{:(pi",","if arg (z) "lt 0),(-pi",", "if arg (z) "gt 0):},"where" -pi lt arg(z) le pi . If arg(z) lt 0 , then arg (-z)-arg(z) is equal to