Home
Class 10
MATHS
If S1 is the sum of an AP of n odd numb...

If `S_1` is the sum of an AP of `n` odd number of terms and `S_2` be the sum of terms of series in odd places of the same AP, then `(S_1)/(S_2)=`
a.     `(2n)/(n+1)`
b.     `n/(n+1)`
c.     `(n+1)/(2n)`
d.     `(n+1)/n`

Promotional Banner

Similar Questions

Explore conceptually related problems

In an AP, S_p=q , S_q=p . Then S_(p+q) is equal to: a.     0 b.     -(p+q) c.     (p+q) d.     pq

If abx^2=(a-b)^2(x+1) , then the value of 1+4/x+4/x^2 is: a.     (a+b)/(a-b) b.     (a+b)^2/(a-b)^2 c.     (a+b)/(a-b)^2 d.     1

If x=3-sqrt(5) , then sqrt(x)/(sqrt(2)+sqrt(3x-2))=_ A.     1/sqrt(5) B.     sqrt(5) C.     sqrt(3) D.     1/sqrt(3)

The number of integral pairs (x,y) satisfying the equation (x-y)^2+2y^2=27 is: a.    8 b.    7 c.    6 d.    5

Let y=1/(2+1/(3+1/(2+1/(3+.....)))) the value of y is: a.    +-(sqrt(15)-3)/2 b.    (sqrt(15)-3)/2 c.    (sqrt(15)+3)/2 d.    None of these

If sin(theta + alpha)=cos(theta+alpha), then the value of tan theta is: a.    1-tan alpha b.    (1-tan alpha)/(1+tan alpha) c.    1+tan alpha d.    None of these

If S is the sum to infinity of a G.P. whose first term is 'a' , then the sum of the first n terms is (A)   S(1-a/S)^n    (B)   S[1-(1-a/S)^n]    (C)   a[1-(1-a/S)^n]    (D)   S[1-(1-S/a)^n]

The number of solutions of z^2+bar z=0 is (a) 1           (b) 2 (c) 3           (d) 4

The value of x/y, if x=0x_1x_2x_1x_2............, where x_1,x_2, are consecutive digits after the decimal point in the number x and if y=0y_1y_2y_1y_2............, where y_1,y_2, are consecutive digits after the decimal point in the number y is: (A).    (y_1y_2)/(x_1x_2)    (B).    (x_1x_2)/(y_1y_2)    (C).    (x_1)/(y_2)    (D).    (x_2)/(y_1)   

Find the volume in cubic decimetre of each of the cubes whose side is (i)1.5m          (ii)  75cm        (iii)  2dm 5cm